

ABN 64 002 841 063

Job No: 13188/3 Our Ref: 13188/3-AA 3 August 2015

Nix Anderson Pty Ltd 17 Chuter Street MCMAHONS POINT NSW 2060 Email: robert.mcguinness@nxa.com.au

Attention: Mr R McGuinness

Dear Sir

re: Proposed Redevelopment 160 Burwood Road, Concord Additional Geotechnical Investigation

This report provides results of an additional geotechnical investigation at the above site. The investigation was commissioned by Mr R Ewing of Propertylink Holdings Pty Ltd through a subcontract agreement and was carried out in general accordance with Geotechnique Pty Ltd proposal Q6614-AC dated 12 June 2015.

Proposed Development

We understand that Nix Anderson has been retained by Propertylink to assist in carrying out feasibility review of the above site to assess the development potential on behalf of the site owners – Freshfood Australia Holdings Pty Ltd. It is also understood that the existing Robert Timms Factory (Bushell's) will be relocated prior to development and the site will be developed as an Urban Regeneration Project – an integrated Residential Community.

An additional geotechnical was required by drilling six boreholes in the north-east corner (pathway and seawall) of the site.

Background Information

Geotechnique Pty Ltd previously completed geotechnical and contamination assessments at the above site, which are detailed in our Reports 13188/1-AA dated 12 September 2014 and 13188/2-AA dated 11 September 2014. It is understood that additional boreholes are now required to be carried out in the area between the pathway and the seawall.

Regional Geology and Landscape

Reference to the Geological Map of Sydney indicates that the bedrock at the site is likely to be Hawkesbury Sandstone, comprising medium grained quartz sandstone.

Reference to the Soil Landscape Map of Sydney indicates that the landscape at the site belongs to the Gymea Group, which is characterised by undulating to rolling rises and low hills on Hawkesbury Sandstone. However, the site is likely to have been filled in the past to raise levels for development. The acid sulfate soil map indicates high probability of Acid Sulfate soils within nearby areas of the existing site.

Scope of Work

Field work for the additional investigation was carried out between 9 and 13 July 2015 and comprised of the following:

- Review services plans obtained from "Dial Before You Dig" to assess existing services across the site.
- Conduct an OH&S and walkover survey to assess existing site conditions.
- Scan proposed borehole locations for underground services. We engaged a specialist services locator for this purpose.
- Drill six (6) boreholes (BH11 to BH16) to depths of 10m, using a truck mounted drilling rig fully equipped for geotechnical investigation. Boreholes were drilled at the locations specified by the client. All boreholes were initially drilled to V-Bit or TC-Bit refusal in bedrock and then continued using rock coring. Approximate borehole locations are shown on the attached Drawing No 13188/3-AA1. Engineering logs detailing subsurface profiles encountered in boreholes and core photographs are also attached.
- Conduct Standard Penetration Testing (SPT) at regular depth intervals in the boreholes to assess strength characteristics of overburden soils.
- Recovery of representative soil and rock samples for visual assessment and laboratory testing (point load index on rock cores, acid sulfate and contamination testing on soil samples). Results of contamination testing are provided in a separate report.
- Measure depths to groundwater/seepage level in boreholes, where encountered.

Field work was supervised by a Geotechnical Engineer, responsible for sampling and preparation of borehole logs.

Surface and Sub-surface Conditions

The following observations were made during the field work:

- The site is occupied by the multistorey Robert Timms Factory (Bushell's), administration building and guard room etc. Open areas of the site are covered with asphalt/bitumen seal, grass and scattered trees.
- The site is bound to the south by Burwood Road, to the north by a Golf Course, to the east by residential building and Exile Bay, and to the west by residential buildings and Duke Avenue.
- The topography of the site gently slopes towards the north east direction towards Exile Bay at about 3 to 5 degrees.

Sub-surface conditions encountered in the boreholes are detailed in the attached engineering logs and summarised below in Table 1.

BH	Top RL (m AHD)	Termination Depth (m)	Topsoil (m)	Fill (m)	Natural (m)	Bedrock (m)					
11	3.5	10.2	NE	0.0 - 4.0*	4.0 - 4.5	4.5 -> 10.2					
12	3.4	9.7	0.0 - 0.1	0.1 – 4.0	4.0 - 7.7	7.7 -> 9.7					
13	3.4	10.0	0.0 - 0.1	0.1 – 2.5	2.5 – 3.5	3.5 -> 10.0					
14	3.2	10.0	0.0 - 0.05	0.05 – 2.0	2.0 - 4.4	4.4 -> 10.0					
15	3.2	1.3	0.0 - 0.1	0.1 -> 1.3	NE	NE					
16	3.2	12.2	0.0 – 0.1	0.1 – 6.0	6.0 – 7.6	7.6 -> 12.2					

* 50mm AC at ground surface

Topsoil	Sandy Silt, low plasticity, dark brown with some roots								
Fill	Sandy Gravel, coarse grained, yellow, brown								
	Silty Sandy Clay, medium plasticity, red brown								
	Silty Clayey Sand, fine to coarse grained, with some gravel								
	Silty Clay, medium plasticity, grey, with some gravels								
Natural Silty Sand, fine to medium grained, brown, red, with some ironstone									
	Silty Sandy Clay, medium plasticity, red, brown								
	Silty Clayey Sand, fine to coarse grained, grey, brown, red								
Bedrock	Sandstone, grey, brown, extremely weathered grading to slightly weathered to fresh with depth, low strength grading to high strength with depth								

The six boreholes (BH11 to BH16) drilled at the location identified by the client, showed fill to depths ranging from 2m to 6m, overlying natural clays and overlying sandstone bedrock. It should be noted that the fill in BH15 and BH16 contained sandstone floaters/boulders. BH15 could not be continued beyond 1.3m due to refusal to drilling on sandstone floater or boulder.

Groundwater Measurement

Groundwater measured during auger boring was encountered at the following depths:

BH	Groundwater Depth (m)
11	4.0
12	1.8
13	2.5
14	3.0
16	3.0

The use of water for coring in the boreholes precluded measurement of groundwater level. It should be noted that fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors.

Acid Sulfate Soil Material

Laboratory tests were carried out to confirm the presence or otherwise of acid sulfate soils. Laboratory investigation consisted of testing representative soil samples to determine pH_{KCI} , pH_{ox} , TPA (Titratable Peroxide Acidity), TAA (Titratable Actual Acidity), S_{POS} % (Percent Peroxide Oxidisable Sulphur) and S_{SCR} % (Chromium Reducible Sulphur).

Laboratory tests were carried out by SGS Australia Pty Ltd (NATA accredited) in accordance with SPOCAS (Suspension Peroxide Oxidation Combined Acidity & Sulfate) / Chromium Reducible Sulphur (SCR) methods recommended by the Queensland Department of Natural Resources, Mines and Energy (Qld NRM&E) (Reference 1). The test results are attached and summary is presented below in Table 2.

BH	Depth (m)	Material Description	рН _{ксі} Unit	pH _{ox} Unit	TPA mole H⁺/t	TAA mole H+/t	S _{POS} % w/w	S _{SCR} % w/w
11	3.2-3.5	Silty Sandy Clay, red-brown	5.8	4.6	35	7	0.110	0.082
12	2.2-2.5	Silty Clay, grey with gravel	4.5	4.4	57	60	0.012	<0.005
13	0.5-0.8	Silty Clay, brown-orange	6.4	4.5	<5	<5	0.017	<0.005
13	2.2-2.5	Silty Clay, brown-grey	6.4	5.2	<5	<5	0.010	<0.005
14	2.5-2.8	Silty Sand, grey-brown	6.7	6.9	<5	<5	0.005	<0.005
15	0-0.3	Silty Sand, brown	8.9	7.4	<5	<5	<0.005	<0.005
		Action Criteria adopted #	18	18	0.03	0.03		

Table 2 –	Acid Sulfate	Tests Results

Notes

pH_{KCl} : pH in a 1:40 (W/V) suspension of soil in a solution of 1M K_{Cl} extract

pHox: pH in a suspension of soil in a solution after peroxide digestion in SPOCAS method

TPA: Titratable Peroxidel Acidity (moles H⁺/tonne)

TAA: Titratable Actual Acidity (moles H⁺/tonne)

S_{POS:} Peroxide Oxidisable Sulphur (% w/w)

S_{SCR:} Chromium Reducible Sulphur (% w/w) #: Action Criteria adopted (Reference 2)

Based on the consideration that the soil to be disturbed would be more than 1000 tonnes and of fine and coarse texture (sand/silty clay), the laboratory test results in the above table indicate the following:

- For soil samples, comprising silty clay, brown-orange in BH13 (0.5m-0.8m); silty clay, brown-grey in BH13 (2.2m-2.5m); silty sand, grey-brown in BH14 (2.5m-2.8m); and silty sand, brown in BH15 (0-0.15m); the TAA and TPA values were below the adopted "Action Criteria" of 18mol H+/tonne. The test results for oxidisable Sulphur SPos and S_{SCR} were also below the adopted "Action Criteria" of 0.03%. The soils at these depths are unlikely to be actual acid sulfate soil or potential acid sulfate soil. Based on the test results, no acid sulfate management plan is required for disturbance of soil at this depth.
- For soil samples, comprising silty sandy clay, red-brown in BH11 (3.2m-3.5m) the TPA value exceeded the adopted "Action Criteria" of 18 mol H+/tonne. The test results for oxidisable Sulphur (SPOs and SSCR) also exceeded the "Action Criteria" of 0.03%.
- For soil samples, comprising silty clay, grey in BH12 (2.2m-2.5m) the TPA and TAA values exceeded the adopted "Action Criteria" of 18 mol H+/tonne. However, the test results for oxidisable Sulphur (SPOs and SSCR) were below the "Action Criteria" of 0.03%. The lower peroxide oxidisable sulphur (Spos/SCR) test result indicated that the presence of pyritic sulphur (i.e. inorganic sulphur) is unlikely. The relatively higher values for TAA and TPA indicate that soils to be disturbed at this depth are acidic soil not acid sulfate soil. Based on these test results, it is considered that the soils in the samples analysed are unlikely to be acid sulfate soil (ASS) but are acidic soils (i.e. non-sulphuric and non-sulphidic) which are unlikely to produce significant amount of acid after being exposed to air due to disturbance or oxidation. The local environment is adapted to these soils in undisturbed condition. However, excavation and placement of these soils in conditions with increased rate of soil drainage could contribute for the release of acidic leachates and management of these acidic soils is required, if disturbed. The treatment of acidic soils (non-acid sulfate soils) should be carried out in accordance with processes described in NSW Acid Sulfate Soil Manual 1998 for acid sulfate management plan.

4

5

It should also be noted that during the previous geotechnical investigation in September 2015, in samples BH2 (1.5m-1.95m) which located in close proximity of BH12, the TAA and TPA values exceeded the adopted "Action Criteria" of 18 mol H+/tonne. The test results for oxidisable Sulphur (SPOs and SSCR) were below the "Action Criteria" of 0.03%. Based on the test results for BH2, it was considered that the soils in the sample BH2 (1.5m-1.95m) analysed were unlikely to be acid sulfate soil (ASS) but are acidic which are unlikely to produce significant amount of acid after being exposed to air due to disturbance or oxidation.

Point Load Strength Index

Rock cores obtained from the boreholes were photographed and tested at selected depths for determination of Point Load Strength Index (I_{s50}). The point load strength indices for the rock cores and the assessed rock strengths, in accordance with Australian Standard AS1726-1993 (Reference 3) are summarised in the following Table 3.

вн	Depth (m)	Diametral I _{s(50)} (MPa)	Axial I _{s(50)} (MPa)	Diametral Assessed Strength	Axial Assessed Strength
	5.3	0.11	0.21	Low	Low
11	6.1	0.45	0.34	Medium	Medium
	8.9	0.32	0.37	Medium	Medium
	9.3	1.24	1.19	High	High
	6.5	0.18	0.26	Low	Low
13	7.8	1.12	1.75 High	High	
13	8.8	1.33	1.71	High	High
	9.9	0.58	0.77	Medium	Medium
	8.2	0.3	0.4	Medium	Medium
16	9.8	0.71	1.46	Medium	High
10	10.4	1.15	1.59	High	High
	11.5	0.97	1.67	Medium	High

Table 3 – Point Load Strength Index Test Results

The point load strength index tests results generally indicate the bedrock to be of low to very high strength. However, it should be noted that the tests could only be carried out on intact (stronger) portions of the rock cores. Therefore, strength assessments presented in Table 3 indicate the upper limits of rock strengths. Also it should be noted that some iron-hardened layers were not tested. These layers might show higher strength than the above values.

DISCUSSION AND RECOMMENDATIONS

Excavation Conditions

No information regarding cut and fill for the proposed development was available. It is our assessment that excavation of soils (including topsoil, fill and natural soils) and extremely weathered and very low strength sandstone can be achieved using conventional earthmoving equipment such as excavators and dozers. However, excavation in distinctly weathered to fresh and medium to high strength sandstone bedrock would be considerably difficult and may require larger equipment (such as a rock saw, Caterpillar D9 or equivalent). Although selection of rock cutting equipment is based on site access, desired smoothness of the excavated rock surface and acceptable ground vibration during rock excavation, we recommend the use of a rock saw for excavation into sandstone bedrock on the site boundaries, in order to minimise ground vibration.

Groundwater in BH11 to BH16 was encountered at depths ranging from 1.8m to 4m. The use of water for coring precluded further groundwater measurements in other boreholes. Depending on time of construction, groundwater might be at below or above this depth. If excavation extends below the groundwater level (most likely to be at RL 0) extensive dewatering may be required. We recommend that further groundwater monitoring be carried out if it is planned to excavate 3m depth. Installation of piezometers might be required to monitor long term groundwater conditions. Although minor groundwater inflow could be managed by a conventional sump and pump method, we do suggest that a specialist dewatering contractor be contacted if significant groundwater inflow is encountered during excavation. It should also be noted that trafficability problems could arise locally during wet weather or if water is allowed to pond at the site.

Fill Placement

We consider that the proposed development works would require only minor fill placement, if any. The following procedures are recommended for placement of controlled fill, where required.

- Strip existing topsoil and stockpile separately for possible future uses. Excess materials should be disposed off the site.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed natural soils or fill to detect
 potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about
 300mm and replace with granular fill, compacted as described below. Proof rolling will not be
 required if stripping of unsuitable materials exposes bedrock. Fill is generally assessed to be well
 compacted.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during proof rolling, this office should be contacted for further recommendations.
- Place suitable fill materials on proof rolled residual soils or bedrock. The fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness and compacted to a Minimum Dry Density Ratio (MDDR) of 98% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone), with a maximum particle size not exceeding 75mm, or low plasticity clay. The natural soils and bedrock obtained from excavations within the site may be used in controlled fill after removal of unsuitable materials, if any, crushing to sizes finer than 75mm, proper mixing and moisture conditioning.
- Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments" (Reference 4). It should be noted that a Geotechnical Inspection and Testing Authority will generally provide certification on the quality of entire compacted fill only if Level 1 supervision and testing is carried out.

Batter Slopes and Retaining Structures

Cut and fill slopes during and after development works should be battered for stability or retained by engineered retaining structures. Recommend batter slopes for stability of cut and fill slopes are presented in Table 4.

Material		porary al : Vertical)	Permanent (Horizontal : Vertical)		
	Exposed	Protected	Exposed	Protected	
Controlled fill / natural soil	1.5:1.0	1.0:1.0	2.5:1.0	2.0:1.0	
Extremely weathered and low strength sandstone	1.0:1.0	0.75:1.0	1.5:1.0	1.0:1.0	
Distinctly weathered to fresh and medium to high strength sandstone	Sub-vertical	Sub-vertical	Sub-vertical	Sub-vertical	

Surface protection of the slopes can be provided by shotcreting, which may be reinforced. It is also recommended that batter slopes are provided with adequate surface and sub-surface drainage.

Sub-vertical excavation in distinctly weathered and medium to high strength sandstone, where required, will have a very low risk of instability. However, some local rock bolting or shotcreting would be required, depending on the relative orientation of the rock discontinuities (bedding partings and joint systems) and cut faces. Therefore, the excavation faces should be inspected by a Geotechnical Engineer or an Engineering Geologist, as excavation progresses, at about every 1.5m depth interval, to assess localised rock bolting or shotcreting requirements.

Retaining structures, if required, could comprise a contiguous pier wall or secant pier walls installed prior to commencement of basement excavation. Secant pier wall will be required if excavation extends well below groundwater level. Earth pressure distribution on such retaining walls may be assumed to be triangular in shape and estimated as follows:

 $p_h = \gamma k H$

Where,

 p_h = Horizontal active pressure (kN/m²)γ= Total density of materials to be retained (kN/m³)k= Coefficient of earth pressure (k_a or k_o)

H = Retained height (m)

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (k_a) is recommended. If it is critical to limit the horizontal deformation of a retaining structure, use of an earth pressure coefficient at rest (k_0) is recommended. Recommended earth pressure coefficients for design of retaining structures are presented in the following Table 5.

Retained Material	Unit Weight (kN/m³)	Active Earth Pressure Coefficient	Passive Earth Pressure (kPa)	At Rest Earth Pressure Coefficient
Controlled fill / natural soil	18	0.40	Ignore	0.60
Extremely weathered and low strength sandstone	23	0.20	300	0.30
Distinctly weathered to fresh and medium to high strength sandstone	24	-	1000	-

Table 5 – Recommended Earth Pressure Parameters for Design of Retaining Structures

The above coefficients are based on the assumption that ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any, should also be allowed for in design of retaining structures.

If the retaining structures are anchored or strutted the active earth pressure may be assumed to be rectangular and estimated as follows:

Active earth pressure $p_h = 0.8k\gamma H$

If basement excavation extends below groundwater level, then the design of retaining structures should allow for groundwater pressure.

The design of any retaining structures should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

Footings

Footings for the proposed development can consist of shallow (pad or strip) or deep footings (bored piers). The following recommended allowable bearing pressure values can be used for the design of footings.

Founding Material	Allowable Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Controlled fill	100	Ignore
Stiff / Medium dense natural soils	125	Ignore
Very low to low strength sandstone	750	50
Medium to high strength sandstone	5000	500

Table 6 – Recommended Allowable Bearing Pressures

The recommended allowable shaft adhesions against uplift pressures are halves of the shaft adhesions for compressive loads presented in Table 6.

If footings are founded above and within the 1 Horizontal to 1 Vertical line projected from the base of excavations, the recommended allowable bearing pressures presented in Table 6 are not applicable and appropriate allowable bearing pressure will have to be determined by reassessment of materials exposed in the excavation face.

As depths to natural soils and bedrock with the recommended allowable bearing pressures could vary across the site, the founding depths of footings to be constructed will also vary. Therefore, an experienced Geotechnical Engineer, on the basis of assessment made during footing excavation or pier hole drilling, should confirm founding levels during construction. The engineer should ensure that the design strength of bedrock is achieved.

For footings founded in controlled fill and natural soils, the total settlements of footings under the recommended allowable bearing pressures are estimated to be in the range of 15mm to 20mm. However, for footings founded in bedrock total settlements under the recommended allowable bearing pressures are estimated to be about 1% of pier diameter or minimum footing dimension. Differential settlements are estimated to be about half the estimated total settlements.

Floor Slabs

Floor slabs could either be ground supported or suspended on footings. Floor slabs founded on controlled fill or natural soils could be designed for a modulus of subgrade reaction of 20kPa/mm.

Site Classification

Considering the presence of deep fill and existing structures, the site is classified as Class "P" (Problematic) as per AS2870-2011 "Residential slabs and footings".

Rock Anchors

It is likely that the retaining walls may require anchorage or tie-back, in order to resist lateral pressure. We suggest that all anchors are socketed in bedrock. The allowable grout to rock stress for use in rock anchorage design may be taken as 10% of the allowable bearing pressure given in Table 6. We also suggest that the anchors should have sufficient bond length outside the 1 Vertical to 1 Horizontal line drawn from the base of excavation.

Acid Sulfate Soil Assessment

Based on the soil samples analysed for acid sulfate soil during the previous geotechnical investigation in September 2014 and this assessment, it is considered that:

- Soil material at depth (0-0.8m) is unlikely to be actual acid sulfate soil or potential acid sulfate soil. Based on the test results, no acid sulfate management plan is required for disturbance of soil at these depths.
- The soil samples analysed at depth (1.5m -2.5m) are unlikely to be acid sulfate soil (ASS) but are acidic soils (i.e. non-sulfuric and non-sulfidic). However, excavation and placement of these soils in conditions with increased rate of soil drainage could contribute for the release of acidic leachates and management of these acidic soils is required, if disturbed. The treatment of acidic soils (non-acid sulfate soils) should be carried out in accordance with processes described in NSW Acid Sulfate Soil Manual 1998 for acid sulfate management plan (Reference 2). The treatment method will include neutralising soils to prevent generation of acidic leachates. However, soil comprising silty clay, brown-orange in BH13 (2.2m-2.5m) is unlikely to be acid sulfate soil and acidic soil.
- The soil samples analysed at depths (3.2m-3.5m) are considered to potential acid sulfate, and likely to produce acid if disturbed. Acid sulfate soil management plan would be required, if the soils are to be disturbed.

Assessment

Based on the investigation results the site is suitable for the proposed residential development. It is important that the recommendations made in this report are followed. If it is planned to construct deep basements, we recommend that further groundwater measurement be carried out prior to excavation.

General

Assessments and recommendations presented in this report are based on site observation and information from only limited number of boreholes and samples analysed. Although we believe that the sub-surface profile presented in this report is indicative of the general profile across the site, it is possible that the sub-surface profile across the site could differ from that encountered in the boreholes. Likewise, comments on depth to groundwater level are based on observation during field work. We recommend that this company is contacted for further advice if actual site conditions encountered during basement excavation differ from those presented in this report.

If you have any questions, please contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

ZIAUDDIN AHMED Senior Geotechnical Engineer

Attached Drawing 13188/3-AA1 Engineering Borehole Logs, Core Photographs & Explanatory Notes Laboratory Test Results

References

- 1. Queensland, Department of Natural Resources, Mines and Energy, 2004 Acid Sulphate Soils Laboratory Methods Guidelines.
- 2. New South Wales, Acid Soil Management Advisory Committee, 1988 Acid Sulphate Soil Manual
- 3. Australian Standard, Geotechnical Site Investigation, AS1726-1993.
- 4. Australian Standard AS3798-2007 Guidelines on Earthworks for Commercial and Residential Developments, 2007.

PTY LTD

EOTECHNIQUE

	Client : Nix Anderson Pty Ltd Project : Proposed Development Location : 160 Burwood Road, Concord drill model and mounting : Utility Mou						velo Roa	pmen ad,	t Bore Date Logg	Job No.: 13188/3 Borehole No.: 11 Date: 09/07/2015 Logged/Checked by: MT nted slope: deg. R.L. surface: ≅3.5				
			amet			-	nm	tility iv	bearing : deg.		eg. um :	R.L. SI	AHD	
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
		GP GP GP GP			N=12 9,7,5 N=5 3,2,3 N=5 3,2,3 N=40 11,20,20	0 1 2 3 2 3 3 4 5 6 7 8 9 9		SM	ASPHALT PAVEMENT FILL: Sandy Gravel, course grained, brown FILL: Sandy Gravel, coarse grained, yellow FILL: Silty Sandy Clay, medium plasticity, red brown Silty SAND, fine to medium grained, brown to red, with some ironstone SANDSTONE, grey-brown, low to medium strength, extremely weathered Refer to Cored Borehole		D		Groundwater at 4.0m	

engineering log cored borehole

	Clien Proje Loca	ct:	P 1(lix Anderson Pty Ltd roposed Development 60 Burwood Road, concord				E	3o Da	b No. : 1 rehole No te: 09/07	5.: 11 7/2015	
H	drill r	nodel a		mounting : Utility Mou	inted			 slope		gged/Chec deg.		≅3.5
	core			NMLC	inteu			bearing		deg.		=0.0 AHD
\vdash				CORE DESCRIPTION				bearing	•		DEFECT DETAILS	
		s S	bol		ing			ooint load index		defect	DESCRIPTIO	N
harrel lift	water loss/level	depth of R.L. in meters	graphic log	rock type, grain characteristics, colour, structure, minor components.	weathering	strength	E	strength I _S (50)	0000	spacing (mm)	type, inclination, thick planarity, roughness, c Specific	mess,
		-5 ::		Coring Commenced at 5.0m								
				SANDSTONE, fine to coarse grained, grey to red-brown	SW	M-H		× × ×				
				Borehole No. 11 terminated at 10.2m							- - - - - - - - - - - - -	

form no. 003 version 03 - 09/10

	Client : Nix Anderson Pty Ltd Project : Proposed Developmen Location : 160 Burwood Road, Concord Irill model and mounting : Utility M					ed De Irwood d	velc Ro	opmen ad,	t Bore Date Logge	No.: 1 hole N : 09/(ed/Che	o. : 07/20 ⁷ cked k	12 15 by: MT	
d						-		tility M	ounted slope :		-	R.L. si	urface: ≅3.4
L	ho	le di	amet	er :	125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP GP			N=7 3,3,4	0 — — — 1 —			TOPSOIL: Sandy Silt, low plasticity, dark brown, with some roots // FILL: Silty Clayey Sand, fine to coarse grained, with some gravel FILL: Silty Clay, medium plasticity, grey, with some gravel				
	•	GP			N=8 4,3,5								Groundwater at 1.8m
		GP			N=5								- - - -
		GP			1,2,3			SC-SM	Silty Clayey SAND, fine to medium grained,	W			
					N=2 1,1,1			CI	black to dark brown, with some shell fragments Silty Sandy CLAY, medium plasticity, red to brown	M>PL	L		- - - -
					N=10 3,5,5								Becoming harder to d <u>rill</u>
					N=R 12,16/ 100			SC-SM	Silty Clayey SAND, fine to coarse grained, grey-brown to red	W	MD		Bedrock
						 							- - - -

	Client : Project : Location : rill model and			Pi 16 Co	opos 30 Bu oncor	rwood d	velc Ro	opmen ad,		Bore Date Logge	No.: 1 hole N : 09/(ed/Che	o. : 07/20 [/] cked k	12 15 by: MT	
a			ei an amet				u nm	tility M	ounted bearing :	slope : deg.		eg. um :	R.L. SI	urface : ≅3.4 AHD
method	/ater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPT soil type, plasticity or particle c colour, secondary and minor co	FION haracteristic, omponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
									Borehole No. 12 terminated at 9 Bit refusal	.7m due to TC-				

	Client : Nix Anderson Pty Ltd Project : Proposed Development Location : 160 Burwood Road, Concord Irill model and mounting : Utility M						velo Ro	opmen ad,	t Bore Date Logge	No.: 1 hole N : 10/(ed/Che	l o. : 07/20 ⁷ cked k	13 15 9y: MT	
d						-		tility M	•		-	R.L. sı	urface: ≅3.4
	ho	le di	amet	er:	125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	V	GP GP GP			N=12 4,7,5 N=6 3,3,3	0 1 2			TOPSOIL: Silty Sand, fine to medium grained, dark brown, with some grass roots FILL: Silty Clay, medium plasticity, brown- orange, with some gravel FILL: Silty Clay, medium plasticity, brown-grey Silty Clayey SAND, fine to medium grained	W			Groundwater at 2.5m
		<u>GP</u>			N=8 3,4,4 N=R 5,8,20/50	3 — - - 4 — - 5 — -		SC-SM	Silty Clayey SAND, fine to medium grained, yellow, with some sandstone gravel Silty SAND, fine to coarse grained, grey SANDSTONE, fine to coarse grained, grey- brown to yellow, extremely weathered, low strength	w	D		Groundwater at 2.5m
						6 —			Refer to Cored Borehole				

engineering log cored borehole

	Client Proje Locat	ct:	P 1	lix Anderson Pty Ltd roposed Development 60 Burwood Road, concord						B D	ate :	ole I 10/	No. '07/2	: 13	
	drill n	nodel	and	mounting :	Utility Mounte	ed			slo	pe :	•	de	g.	R.L. surface :	≅3.4
	core	size:		NMLC	2			be	earir	ng :		de	g.	datum :	AHD
		Ŀ	_	CORE DESCR	PTION			noi	nt lo	ad			D	EFECT DETAILS	
i lift	level	depth of R.L. in meters	graphic log	rock type, grain chara		weathering	gth	· i	ndex		def spac	cing		DESCRIPTIO type, inclination, thick	
barrel lift	water loss/level	dept in me	grap	colour, structure, minor	components.	weat	strength		s(50) ∟ [™] ∣	н vн	m) 20 500 20 500		0	planarity, roughness, co Specific	
				Coring Commenced at 5.8m	arging brown to	DW	1 14								
		6		SANDSTONE, fine to coarse red-grey	grained, brown to	Dvv	L-M						-		
		_		SANDSTONE, fine to coarse	grained, grey to	DW	L-M		×				-		
				red-brown									-		
		7 ——											-		
		_		_CORE LOSS: 7.4-7.5m										Core loss 100mm	
		_		SANDSTONE, fine to coarse \red-brown	graineu, grey to	DW DW-	M M-H			X					
		8		SANDSTONE, fine to coarse grey	grained, brown to	SW							-		
		_											-		
		9								×					
		_											-		
		_													
									×				-		
				Borehole No. 13 terminated a	at 10.0m								-		
		_													
		_											-		
		11 —											-		
		_											-		
		_											-		
		12 —											ŀ		
		_											-		
		13 —											-		
		_											-		
		 14											ŀ		
		_											$\left \right $		
		_													
		 15											Ŀ		
		13													

	Client : Nix Anderson Pty Ltd Project : Proposed Developmen Location : 160 Burwood Road, Concord drill model and mounting : Utility M						velo	opment	Borel Borel Date	lo. : 1 hole N : 10/(ed/Che	o. : 07/201	14 15	
d						ng :	U	Itility M	ounted slope :	de	eg.	R.L. sı	urf ace : ≅3.2
	ho	le di	amet	er :	125	n	nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP			N=6 1,2,4	U			TOPSOIL: Silty Sand, fine to medium grained, brown, with some grass roots FILL: Silty Clay, medium plasticity, grey-brown FILL: Silty Sand, fine to medium grained, brown, with trace of iron shards				
	V	GP GP			N=20 11,15,5	2			Silty SAND, fine to medium grained, grey- brown				
					N=9 10,5,4			SM	Silty SAND, fine to coarse grained, grey-brown Silty SAND, fine to medium grained, grey	W	MD MD		Groundwater at 3.0m
					N=13 3,5,8			SC-SM	Silty Clayey SAND, fine to coarse grained, red- brown	W	MD		
					N=23 5,11,12	6 —— — —		SM	Silty SAND, fine to coarse grained, red- brown, with some sandstone fragments	w	MD		
					<mark>N=R</mark> \25/50_	7 —			SANDSTONE, red-brown to grey, extremely weathered, low strength SANDSTONE, grey to red, distinctly weathered, low to medium strength				Bedrock

	Project : Pro Location : 16			ropos	rwood	velc	pment		Bore Date	No.: 1 hole N : 10/(ed/Che	o. : 07/20 ⁷	14 15		
d						ng :	U	tility M	ounted	slope :	de	eg.	R.L. sı	u rface : ≅3.2
	ho	le di	amet	er :	125	r	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRI soil type, plasticity or particle colour, secondary and minor	e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						-10			Borehole No. 14 terminated at	10.0m				
									Borehole No. 14 terminated at	10.0m				
						17 —								
														_
						 18								
						 19								-
						_								

Pi Lo	Client : Nix Anderson Pty Ltd Project : Proposed Development Location : 160 Burwood Road, Concord rill model and mounting : Utility M				velc Ro	opmen ad,		Bore Date Logge	No.: 1 hole N : 13/(ed/Che	o. : 07/20 ⁷ cked k	15 15 by: MT		
					-		tility M		slope :	de	-	R.L. sı	urface: ≅3.2
	ole di			125		nm	-	bearing :	deg.	dat	um :	_	AHD
method groundwater		PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTIC soil type, plasticity or particle ch. colour, secondary and minor con	aracteristic, nponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	GP GP	IId	90	9jj N=R 3,5,25/50				colour, secondary and minor con TOPSOIL: Silty Sand, fine to med brown, with some grass FILL: Silty Sandy Clay, medium pl brown Borehole No. 15 terminated at 1.3 refusal in possible sandstone boul	lium grained, lasticity,				
					9								

	Client :Nix Anderson Pty LtdProject :Proposed DevelopmentLocation :160 Burwood Road, Concorddrill model and mounting :Utility M					ed De rwood d	velo Ro	pmen ad,	t Bore Date Logge	No.: 1 hole N : 13/(ed/Che	l o. : 07/20 ⁻ cked k	16 15 by: MT	
						-		tility M	· · · · ·		-	R.L. sı	urface: ≅3.2
	ho	le di	amet		125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP				0			TOPSOIL: Silty Sand, fine to medium grained, brown, with grass roots				
		GP			N=10 3,6,4	_			FILL: Silty Clay, medium plasticity, grey-brown				-
						1			FILL: Silty Sand, fine to coarse grained, brown, with some gravel				
		GP			N=12 3,4,8								
						2 — — —							
					N=R 25/50	3			FILL: Silty Sand, fine grained, brown, with some boulders				
						 4							- - - -
						 5							- - -
													-
						-		SM	Silty SAND, fine to medium grained, dark brown, with some shell fragments	W			-
						7							
						8	-		Refer to Cored Borehole				-
						9 — —							-
													_

engineering log cored borehole

	Clien Proje Locat	ct:	P 1	lix Anderson Pty Ltd Proposed Development 60 Burwood Road, Concord							Bo Da	reho te :	ole 13	Nc 3/07	3188/3 .: 16 7/2015 ked by : MT	
	drill r	nodel	and	mounting : Util	ity Moun	ted				slope			d	eg.	R.L. surface :	≅3.2
	core	size:		NMLC				k	bea	aring	:		d	eg.		AHD
		s.r.	g	CORE DESCRIPTION	N	5		р	oin	t load					DEFECT DETAILS	
barrel lift	water Ioss/level	depth of R in meters	graphic log	rock type, grain characterist colour, structure, minor compo		weathering	strength		stre I _S (dex ength (50) ^M _H ^{∨⊦}	1 00	defe spac mi ۇ ق ۋ	cing m)	1	DESCRIPTIC type, inclination, thicl planarity, roughness, o Specific	kness,
				Coring Commenced at 7.6m											Cara loss 250mm	
				CORE LOSS: 7.6-7.85m	d rod	DW-	м								Core loss 250mm	
		8 — — — 9 — —		SANDSTONE, fine to coarse graine brown, grey	a, rea-	SW	IVI			×					-	
				SANDSTONE, fine to coarse graine brown	ed, red-	DW- SW	M-H			×					- - - - - -	
		 12		SANDSTONE, fine to coarse graine Borehole No. 16 terminated at 12.2		SW- FR	H- VH			×					- - - -	

form no. 003 version 03 - 09/10

KEY TO SYMBOLS

Symbol Description

Strata symbols

	Pavement (Bitumen, Concrete Slab, etc)
	Fill
	Silty Sand
	Sandstone
	Topsoil
	Silty Clayey Sand
2272 2272 2272 2272	Silty Sandy Clay medium plasticity
<u>Misc. S</u>	ymbols
_	Groundwater

Descriptions of various line types (solid, dotted, etc.)

____ Profile change

___ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 13/07/2015 and 13/07/2015 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

KEY TO SYMBOLS

Symbol Description

Strata symbols

Sandstone

Core Loss

Misc. Symbols

 \times Point Load Strength

Descriptions of various line types (solid, dotted, etc.)

- ____ Profile change
- ____ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 13/07/2015 and 13/07/2015 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

Log Column	Symbol/Value	Description
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger
0	TC-bit	Tungsten Carbide bit attached to auger
	RR	Tricone (Rock Roller) bit
	DB	Drag bit
	BB	Blade bit
Groundwater	Dry	Groundwater not encountered to the drilled or auger refusal depth
		Groundwater level at depths shown on log
		Groundwater seepage at depths shown on log
Environment Sample	GP G	Glass bottle and plastic bag sample over depths shown on log Glass bottle sample over depths shown on log
	P	Plastic bag sample over depths shown on log
PID Reading	100	PID reading in ppm
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log
	DB	Disturbed Bulk sample over depths shown on log
<u> </u>	U ₅₀	Undisturbed 50mm tube sample over depths shown on log
Field Test	N=10 3,5,5	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per 150mm penetration.
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or
	10,15/100	boulders.
		The first number represents10 blows for 150mm penetration whereas the second
		number represents 15 blows for 100mm penetration where SPT met refusal
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each
		number represents blows per 100mm penetration. 'R/10' represents refusal after
	6	10mm penetration in hard/very dense soils or in gravels or boulders.
	R/10	
Classification	GP	Poorly Graded GRAVEL
	GW	Well graded GRAVEL
	GM	Silty GRAVEL
	GC	Clayey GRAVEL
	SP	Poorly graded SAND
	SW	Well graded SAND
	SM SC	Silty SAND Clayey SAND
	ML	SILT / Sandy SILT / clayey SILT, low plasticity
	ML	SILT / Sandy SILT / clayey SILT, medium plasticity
	MH	SILT / Sandy SILT / clayey SILT, high plasticity
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity
	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity
Moisture Condition		
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit
	M=PL M>PL	Moisture content equal to Plastic Limit Moisture content to be greater than Plastic Limit
	INI>FL	Moisture content to be greater than Plastic Linit
Cohesionless soils	D	Dry - Runs freely through hand
	M	Moist - Tends to cohere
	W	Wet - Tends to cohere
Consistency		Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu)
Cohesive soils	VS	Very Soft ≤12 <25
	S	Soft >12 ≤25 25 - 50
	F	Firm >25 ≤50 50 − 100
	St	Stiff >50 ≤100 100 - 200
	VSt H	Very Stiff >100 ≤200 200 – 400 Hard >200 >400
Density Index		Term Density Index, I _D (%) SPT 'N' (blows/300mm)
Cohesionless soils	VL	Very Loose ≤15 ≤5
	L	Loose >15 ≤35 >5 ≤10
	Μ	Medium Dense >35 ≤65 >10 ≤30
	D	Dense >65 ≤85 >30 ≤50
	VD	Very Dense >85 >50
Hand Penetrometer	100	Unconfined compressive strength (q _u) in kPa determined using pocket
Remarks	200	penetrometer, at depths shown on log Geological origin of soils
Romana	Residual	Residual soils above bedrock
	Alluvium	River deposited Alluvial soils
	Colluvial	Gravity deposited Colluvial soils
	Aeolian	Wind deposited Aeolian soils

GEOTECHNIQUE PTY LTD

AS1726 – Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Ident	ifications Sand a	-				Laboratory classifie	ation	
	BOULDERS	200							% (2) < 0.075mm	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
	COBBLES	63						'su					
		Coarse 20	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs te sizes, not enou o dry strength		or Divisions'	0-5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils
	GRAVELS (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			the criteria given in 'Major	0-5	-	Fails to co	mply with above	grained sons
COARSE GRAINED SOILS (more than half of		Medium 6	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength			riteria giv	12-50	Below 'A' line or <i>I_p<4</i>	-	-	2. Borderline classifications occur when the percentage of
material less 63mm is larger than 0.075mm)		Fine 2.36	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	according to the c	12-50	Above 'A' line or <i>I_p</i> >7	-	-	fines (fraction smaller than 0.075mm size) is
(mor coar smal		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength				0-5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
	SANDS (more than half of	Medium 0.2	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength				0-5	-	Fails to co	mply with above	require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)		SM	Silty sands, sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength			classification of fractions	12-50	Below 'A' line or <i>l_p<</i> 4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	for	12-50	Above 'A' line of <i>I_p</i> >7	-	-	
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Quick to slow	Toughness None	sing 63mm		Below 'A' line			
	SILTS & CLAYS (liqu	id limit < 50%)	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	of material passing	Ē	Above 'A' line	40		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	230	c	
SOILS (more than half of material less than 63mm is smaller than			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	Slow to none	Low to medium	the gradation	More than 50% passing 0.075mm	Below 'A' line	CL CL 200 000 000 000 000 000 000 00	CI NE	
0.075mm)	SILTS & CLAYS (liquid limit > 50%)		СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	vore than	Above 'A' line	- UI Dasticity Dasticity Last		OH or
			ОН	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		~	Below 'A' line		OL ar ML	МН
	HIGHLY ORGANIC S	OILS	Pt	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesco	es with H ₂ O ₂		20 30 40 50 Liquid Limit (W _L), perce	60 70 80 ent

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol	Description	
Core Size	NQ	Nominal Core Size (mm 47)
	NMLC	52	
Water Loss	HQ	63 Complete water loss	
		Partial water loss	
Weathering	FR	Fresh	Rock shows no sign of decomposition or staining
	SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
	DW	Distinctly Weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores
	EW	Extremely Weathered	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrate or can be remoulded, in water
	RS	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but soil has not been significantly transported
Strength	-		Point Load Strength Index (I _{s50} , MPa)
	EL VL	Extremely Low	≤0.03 >0.03 ≤0.1
	L	Very Low Low	>0.1 ≤0.3
	M	Medium	>0.3 ≤1
	н	High	>1 ≤3
	VH	Very High	>3 ≤10
Defect Specing	EH	Extremely High	>10
Defect Spacing		Description Extremely closely space	d Spacing (mm) d
		Very closely spaced	20 to 60
		Closely spaced	60 to 200
		Medium spaced	200 to 600
		Widely spaced	600 to 2000
		Very widely spaced	2000 to 6000
Defect Description		Extremely widely spaced	d >6000
Defect Description Type	Вр	Bedding parting	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fp	Foliation parting	
	Jo	Joint	
	Sh	Sheared zone	
	Cs Ds	Crushed seam Decomposed seam	
	ls	Infilled seam	
Macro-surface geometry	St	Stepped	
	Cu Un	Curved Undulating	
	lr	Irregular	
	PI	Planar	
NF (
Micro-surface geometry	Ro Sm	Rough Smooth	
	SI	Slickensided	
	cn	clean	
Coating or infilling	sn	stained veneer	
	vn cg	coating	

Grain S	Size mm				Be	dded rock	s (mostly	sedimentary)			
More than 20	20		ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock	
	6	RUD	DACEOUS	CONGLOMERATE Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix		K Calcirudite			Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke	te or iron minerals	-	Calciru (pape and DOLOMITE (undifferentiated) Calcard			Cemented volcanic ash	Gypsum
	0.06 0.002 Less than 0.002	ARGII	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	-
Amorpho crypto-cry	us or			Flint: occurs as hands o Chert: occurs as nodule			calcareou	s sandstone			COAL LIGNITE
				Granular cemented – e:	xcept amorphous roo	cks					_
				SILICEOUS	SILICEOUS CALCAREOUS						CARBONACEOUS
					ks vary greatly in stre seen in outcrop. On	y sedime	ntary rock	s, and some met	tamorphi	any Igneous rocks. Bedding c rocks derived from them, co ochloric acid	

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

liated rocks (mostly metamorphic)		Rocks with	massive structure		Grain size (mm)		
		Grain size description	Pe	gmatite		Pyrosenite	More than 20
GNEISS	MARBLE					Peridorite	20
Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO		6
	Granulite	COARSE	phorphyritic and	are then described,			
Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
	Serpentine	MEDIUM	I hese rocks are sometimes phorphyritic and are then described as porphyries		Dolerite		0.2
							0.06
PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DACALT		0.002
SLATE Well developed plane cleavage (foliation)		FINE			BASALI		Less than 0.002
Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
Ē			Pale<			>Dark	
	Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
Foliation in gneisses is best observed orphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent	d in outcrop. Non- pt by association. ed as 'hornfels' rock	Composed of	composed of closely interlocking mineral grains. Strong when fresh; not porous				
	GNEISS Well developed but often widely spaced foliation sometimes with schistose bands Migmatite Irregularly foliated: mixed schists and gneisses SCHIST Well developed undulose foliation; generally much mica PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E HIC ROCKS phic rocks are distinguished by foliation in gneisses is best observer orphics are difficult to recognize exceed dby contact metamorphism is describ y somewhat stronger than the parent	GNEISS MARBLE Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Migmatite Irregularly foliated: mixed schists and gneisses HORNFELS SCHIST Well developed undulose foliation; generally much mica Amphibolite PHYLLITE Slightly undulose foliation; sometimes 'spotted' Serpentine SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E Mainly SILICEOUS	GNEISS MARBLE QUARTZITE QUARTZITE Spaced foliation sometimes with schistose bands Granulite COARSE Granulite Migmatite Granulite Irregularly foliated: mixed schists HORNFELS Amphibolite Amphibolite SCHIST Amphibolite Well developed undulose foliation; generally much mica Serpentine PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite FINE Found in fault zones, mainly in igneous and metamorphic areas IGNEOUS RC Composed of Mode of occu E Mainly IGNEOUS RC Composed of Mode of occu IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non-rophics are difficult to recegnize except by association. IGNEOUS RC Composed of Mode of occu Wold of occu is optical as thornfels' Mode of occu	GNEISS MARBLE Grain size description Pe GNEISS Well developed but often widely spaced foliation sometimes with schistose bands MARBLE GUARTZITE GRANITE Migmatite Granulite COARSE These rocks are phorphyritic and for example, as Migmatite HORNFELS Amphibolite Micorgranite SCHIST HORNFELS Amphibolite Micorgranite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM Micorgranite PHYLLITE Sightly undulose foliation; sometimes spotted' SLATE These rocks are phorphyritic and as porphyries SLATE Well developed plane cleavage (foliation) Obsidian Obsidian Functional in fault zones, mainly in igneous and metamorphic areas SLICEOUS ACID Mich RockS Mainly IGNEOUS ROCKS Composed of closely interlocking Much quartz IIC ROCKS phic rocks are distinguished by foliation which may Foliation in genesues is best origina even to cks IGNEOUS ROCKS phic rocks are distinguished by foliation which may Foliation in genesues is bescripted as 'hornfeis' by somewhat stronger than the parent rock IGNEOUS ROCKS	GNEISS MARBLE Grain size description Pegmatite GNEISS Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Granuite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite Migmatite Irregularly foliated: mixed schists and gneises HORNFELS Micorgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite Staft Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Sightly undulose foliation; sometimes 'spotted' Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries SLATE Well developed plane cleavage (tolation; sometimes rights and metamorphic areas Obsidian Volcanic glass E Quantz INTERMEDIATE Some quartz IC ROCKS Mainly Sill CEOUS INTERMEDIATE Flore occks are distinguished by foliation which may Phorphyrities are distinguished by foliation which may Phorphyritie and are then described as porphyries INTERMEDIATE Store cocks are distinguished by foliation which may Phorphyritie and are themorphism is described as horm	GNEISS MARBLE Grain size Pegmatile GNEISS QUARTZITE Granuite GRANITE Diorite GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite HORNFELS HORNFELS These rocks are sometimes Diorite GABBRO SCHIST Well developed undulose Amphibolite MEDIUM Micorgranite Microdiorite Dolerite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM These rocks are sometimes Dolerite StATE StATE Melnity Obsidian Volcanic glass BASALT Morite Supersprintic and are then described as porphyrite a	CNEISS MARBLE QUARTZITE Pegmatite Pegmatite Microson QUARTZITE QUARTZITE Granulite GRANITE Dionite GABBRO Migmatile Inregulary foliated: mixed schists Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite GABBRO Peridonite Migmatile Inregulary foliated: mixed schists HORNFELS Amphibolite Micorgranite Micordonite SCHIST Weil developed undulose foliation; generally much mica Amphibolite Micorgranite Micordonite Dolerite Staff Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyrites Dolerite Dolerite Staff Weil developed plane cleavage (fdation) FINE RHYOLITE ANDESITE Dolerite Myorite Fond in fault zones, mainly in gneous and metamorphic areas Obsidian Volcanic glass E E E RefOLS ACID INTERMEDIATE BASALT ULTRA BASIC Much quartz Some quartz Some quartz Some quartz Sone quartz E E CORCKS Composed of closely interlockin

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Danda Sapkota	Manager	Jon Dicker
Client	Geotechnique	Laboratory	SGS Cairns Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	02 4722 2700	Telephone	+61 07 4035 5111
Facsimile	02 4722 6161	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	13188-4 Concord	SGS Reference	CE116272 R0
Order Number	SE141506	Report Number	0000026795
Samples	7	Date Reported	24 Jul 2015
Date Started	21 Jul 2015	Date Received	20 Jul 2015

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

SIGNATORIES _

Anthony Nilsson Operations Manager

SGS Australia Pty Ltd ABN 44 000 964 278

www.au.sgs.com

CE116272 R0

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 09 Jul 2015	CE116272.002 Soil 09 Jul 2015 BH12 2.2-2.5	CE116272.003 Soil 09 Jul 2015 BH13 0.5-0.8	CE116272.004 Soil 09 Jul 2015 BH13 2.2-2.5
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 20/7/2015						
% Moisture	%w/w	0.5	17	19	15	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 22/7/2015

pH KCl	pH Units	-	5.8	4.5	6.4	6.4
Titratable Actual Acidity	kg H2SO4/T	0.25	0.37	2.9	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	7	60	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.01	0.10	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	0.016	0.016	0.009	0.011
Calcium (CaKCl)	%w/w	0.005	0.056	0.039	0.30	0.11
Magnesium (MgKCI)	%w/w	0.005	0.050	0.045	0.045	0.037

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 22/7/2015

Peroxide pH (pH Ox)	pH Units	-	4.6	4.4	4.5	5.2
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	1.7	2.8	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	35	57	<5	<5
TPA as S % W/W	%w/w S	0.01	0.06	0.09	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	27	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	1.3	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.04	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.11	0.012	0.017	0.010
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	67	7	11	6
Sulphur (Sp)	%w/w	0.005	0.12	0.027	0.027	0.021
Calcium (Cap)	%w/w	0.005	0.10	0.038	0.32	0.12
Reacted Calcium (CaA)	%w/w	0.005	0.045	<0.005	0.016	<0.005
Reacted Calcium (CaA)	moles H+/T	5	23	<5	8	<5
Magnesium (Mgp)	%w/w	0.005	0.060	0.042	0.044	0.041
Reacted Magnesium (MgA)	%w/w	0.005	0.011	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	9	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

CE116272 R0

	Sa	ple Number mple Matrix Sample Date ample Name	CE116272.001 Soil 09 Jul 2015 BH11 3.2-3.5	CE116272.002 Soil 09 Jul 2015 BH12 2.2-2.5	CE116272.003 Soil 09 Jul 2015 BH13 0.5-0.8	CE116272.004 Soil 09 Jul 2015 BH13 2.2-2.5
Parameter	Units	LOR				
SPOCAS Net Acidity Calculations Method: AN220 Tested	:-					
s-Net Acidity	%w/w S	0.01	0.05	0.10	<0.01	<0.01
a-Net Acidity	moles H+/T	5	30	62	<5	<5
Liming Rate	kg CaCO3/T	0.1	2.2	4.7	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	0.04	NA	NA	NA
a-Net Acidity without ANCE	moles H+/T	5	75	67	12	7

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 21/7/2015

Chromium Reducible Sulphur (Scr)	%	0.005	0.082	<0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	51	<5	<5	<5

CE116272 R0

			Sa	ple Number mple Matrix Sample Date ample Name	Soil 09 Jul 2015	CE116272.006 Soil 09 Jul 2015 BH15 0-0.3	CE116272.007 Soil 09 Jul 2015 BH16 0.5-0.8
Parameter			Units	LOR			
Moisture Content	Method: AN002	Tested: 20/7/2015					
% Moisture			%w/w	0.5	14	6.9	18

TAA (Titratable Actual Acidity) Method: AN219 Tested: 22/7/2015

рН КСІ	pH Units	-	6.7	8.9	6.3
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	0.011	<0.005	<0.005
Calcium (CaKCl)	%w/w	0.005	0.027	0.13	0.22
Magnesium (MgKCI)	%w/w	0.005	0.038	0.017	0.032

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 22/7/2015

Peroxide pH (pH Ox)	pH Units	-	6.9	7.4	4.3
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.15	0.25	<0.01
ANCE as moles H+/tonne	moles H+/T	5	30	50	<5
ANCE as S % W/W	%w/w S	0.01	0.05	0.08	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.005	<0.005	0.018
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	11
Sulphur (Sp)	%w/w	0.005	0.017	0.007	0.019
Calcium (Cap)	%w/w	0.005	0.034	0.14	0.22
Reacted Calcium (CaA)	%w/w	0.005	0.007	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.048	0.022	0.032
Reacted Magnesium (MgA)	%w/w	0.005	0.009	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	8	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-

	Sample Matrix Sample Date		CE116272.005 Soil 09 Jul 2015 BH14 2.5-2.8	CE116272.006 Soil 09 Jul 2015 BH15 0-0.3	CE116272.007 Soil 09 Jul 2015 BH16 0.5-0.8
Parameter	Units	LOR			
SPOCAS Net Acidity Calculations Method: AN220 Tested: -					
s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	NA	NA	NA
a-Net Acidity without ANCE	moles H+/T	5	<5	<5	12
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	<0.1	NA

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 21/7/2015

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5	<5

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulphur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chromium Reducible Sulphur (Scr)	LB028096	%	0.005	<0.005	0%	93%
Chromium Reducible Sulphur (Scr)	LB028096	moles H+/T	5	<5		

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
рН КСІ	LB028108	pH Units	-	6.0	0%	98%
Titratable Actual Acidity	LB028108	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB028108	moles H+/T	5	<5	0%	92%
Titratable Actual Acidity (TAA) S%w/w	LB028108	%w/w S	0.01	<0.01	0%	92%
Sulphur (SKCI)	LB028108	%w/w	0.005	<0.005	7%	112%
Calcium (CaKCl)	LB028108	%w/w	0.005	<0.005	9%	
Magnesium (MgKCI)	LB028108	%w/w	0.005	<0.005	1%	

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery
Peroxide pH (pH Ox)	LB028109	pH Units	-	6.4	0%	100%
TPA as kg H₂SO₄/tonne	LB028109	kg H2SO4/T	0.25	<0.25	0%	107%
TPA as moles H+/tonne	LB028109	moles H+/T	5	<5	0%	107%
TPA as S % W/W	LB028109	%w/w S	0.01	<0.01	0%	107%
ANCE as % CaCO ₃	LB028109	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB028109	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB028109	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB028109	%w/w	0.005	<0.005	19%	
Calcium (Cap)	LB028109	%w/w	0.005	<0.005	17%	
Magnesium (Mgp)	LB028109	%w/w	0.005	<0.005	14%	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
	METHODOLOGT SUMMART
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN004	Soils, sediments and sludges are pulverised using an LM2 ring mill. The dry sample is pulverised to a particle size of >90% passing through a -75µm sieve.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting 11 NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service. QFL QC result is below the lower tolerance ** Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte Not Validated ۸ Performed by outside laboratory. NVL

Samples analysed as received. Solid samples expressed on a dry weight basis.

FOOTNOTES

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.